EIGENSCHAFTEN

Die MGTB ist eine Mini-Lineareinheit mit Zahnriemenantrieb, bei der die Drehbewegung (Rotation) der Antriebswelle in die Linearbewegung (Translation) des Tischteils mit hohem mechanischem Wirkungsgrad und geringer innerer Reibung umgesetzt wird.

Hochleistungsmerkmale, wie hohe Geschwindigkeit, Beschleunigung und Wiederholgenauigkeit werden durch einen Nullspiel-Zahnriemenantrieb und ein Linearführungssystem erzielt.

Ein vormontierter Standardmotor mit Motoradapter und Kupplung, gemeinsam mit dem Standardantrieb, machen das System Plug-&-Drive-fähig. Kompakte Abmessungen und optimal ausgewählte Motorkombinationen decken eine große Bandbreite von Anwendungen ab.

Das Aluminium-Profilgehäuse sieht seitliche Nuten für Spannstücke sowie Nuten für Magnetfeldsensoren vor.

Optionen, wie verschiedene Motorgrößen, sowie eine große Auswahl an Zubehör und mögliche Mehrachssystem-Kombinationen machen dieses Produkt höchst flexibel.

Für den Bedarf eines individuellen Motors ist die Mini-Lineareinheit auch ohne vormontierten Motor erhältlich.

Auf dem Tischteil der Mini-Lineareinheit sind Anschluss- und Zentrierbohrungen vorgesehen, die die Montage von Spannstücken, Anschlussplatten oder kundenspezifischen Anwendungen ermöglichen.


Die Mini-Lineareinheiten MGTB lassen sich problemlos mit anderen MGTB- oder MGBS-Lineareinheiten und/oder den Mini-Elektrozylindern MCE oder den Mini-Elektroschlitten MSCE zu einem Mehrachssystem kombinieren.

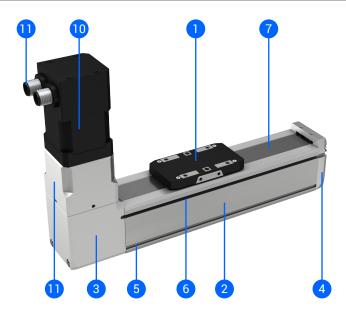
Die Standardlängen gewährleisten ein hervorragendes Preis-Leistungs-Verhältnis und schnelle Lieferzeiten.

Jede MGTB ist optimal vorgeschmiert und bereit für den wartungsfreien Betrieb.

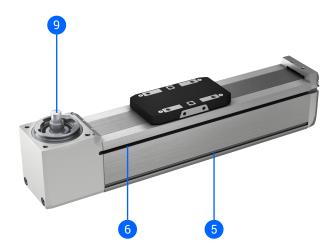
Die MGTB gestattet relativ hohe Tragzahlen und optimale Zyklen für die Bewegung von Nutzlasten bei hoher Geschwindigkeit sowohl in horizontaler als auch in vertikaler Richtung.

i Die Aluminiumprofile werden nach EN 12020-2 gefertigt

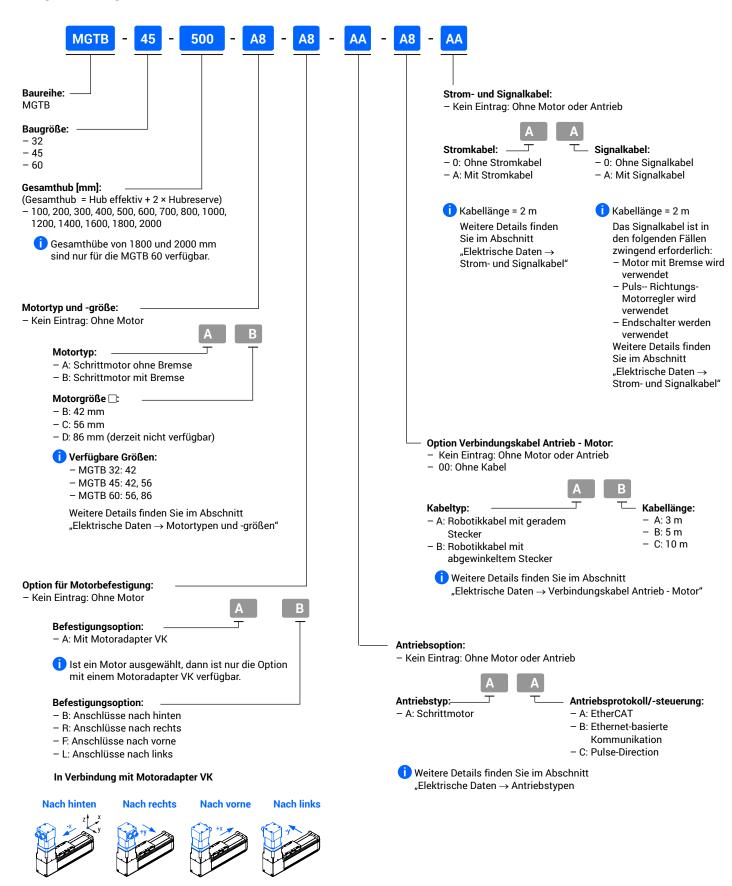
Motoradapter VK mit Kupplung und Motor


MGTB ohne vormontierten Motor

Zubehör, MGTB ohne vormontierten Motor, inklusive Spannstücke und Magnetfeldsensoren


KONSTRUKTION

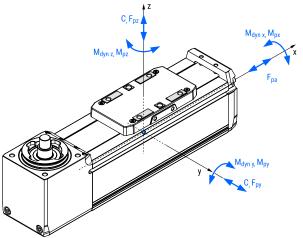
Kombination mit Standardmotor und Motoradapter VK



- 1 Tischteil
- 2 Aluminiumprofil
- 3 Antriebsblock mit Zahnriemenscheibe
- 4 Endblock
- 5 Befestigungsnuten 6 Nut für Magnetfeldsensoren
- 7 Korrosionsbeständiges Abdeckband
- 8 Motoradapter VK mit Kupplung 9 Antriebswelle der Synchronscheibe
- 10 Vormontierter Motor (mit/ohne Bremse)
- 11 Standardanschlüsse (Motor, Geber und Bremse - optional)

Ohne Motor

BESTELLBEISPIEL



TECHNISCHE DATEN

Allgemeine technische Daten

11077	Dynamische Tragkraft¹	Dynamische Momente ¹			Max. zulässige Belastungen Kräfte Momente					Max. Wiederholgenauigkeit²	Gesamthub
MGTB	C [N]	M _{dyn x} [Nm]	M _{dyn y} [Nm]	M _{dyn z} [Nm]	F _{py} [N]	F _{pz} [N]	M _{px} [Nm]	M _{py} [Nm]	M _{pz} [Nm]	[mm]	[mm]
32	1310	4,8 4,1		1	200	300	2,0	1,8	1,3	±0,08	100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1600
45	3240	20,1	20,1 17,4		400	700	7,4	6,3	4,7	±0,08	100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1600
60	11190 77,4		79	,8	850	2000	29,2	30,8	31,8	±0,08	100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1600, 1800, 2000

¹ Dynamische Tragkraft und dynamische Momente des Linearführungssystems. Ausgehend von diesen Werten wird die Lebensdauer berechnet.

Antriebsdaten

In Kombination mit Standardmotor und Motoradapter VK

MGTB	Verhältnis Zahnriemen-	Durchmesser Zahnriemen-	Motor		Max. zulässige	Max. zul Nutzla		Max. Hubgesch-	Max.	Max.	
+ Motor	scheibe Antrieb	scheibe			Axial- belastung ^{1, 3}	Horizontal	Vertikal	windigkeit ²	Drehzahl ²	Beschleunigung	
und VK	[mm/U]	[mm]	Тур	Größe ☐ [mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	v _{max} [m/s]	n _{max} [U/ min]	a _{max} [m/s²]	
32	66	21,00		42	25	0,9	0,9	1.500	1365	20	
45	63	20,05		42	10	0,9	0,7	1.344	1280	20	
43	03	20,03	Schrittmotor	56	85	6,2	6,2	1.500	1430	20	
60	78	24,83		56	55	3,6	3,6	1.500	1155	20	
00	/ 6	24,83		86		Derzeit	Derzeit nicht verfügbar			20	

¹ Dieser Wert ist abhängig vom gewählten Motor, der Hubgeschwindigkeit und der Beschleunigung des Tischteils (siehe folgende Diagramme zu den Kombinationen mit den Standardmotoren). Hier wird von einer MGTB mit einem Gesamthub von 500 mm ausgegangen.

² Gilt für unidirektionale Axialbelastung.

² Gültig für den gesamten Hubbereich.

³ Es wird von einer Beschleunigung des Tischteils von 2 m/s² ausgegangen.

Ohne Motor

MGTB ohne Motor	Verhältnis Zahnriemen- scheibe Antrieb	Durch- messer Zahnriemen- scheibe	Max. zulässige Axial- belastung ¹	Max zulässige N Horizontal		Max. Antriebs- moment	Leerlauf- drehmoment	Maximale Radial- kraft auf Welle	Max. Hubge- schwindig- keit ¹	Max. Drehzahl ¹	Max. Beschle- unigung
	[mm/U]	[mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	M _p [Nm]	M ₀ [Nm]	F _{pr} [N]	v _{max} [m/s]	n _{max} [U/min]	a _{max} [m/ s²]
32	66	21,00	65	31	5,4	0,68	0,07	50	1.500	1365	20
45	63	20,05	85	42	7,1	0,85	0,20	100	1.500	1430	20
60	78	24,83	130	65	11	1,61	0,40	200	1.500	1155	20

¹ Gültig für den gesamten Hubbereich.

Betriebsbedingungen

Umgebungstemperatur	0°C ~ +50°C
Umgebungstemperatur ohne Motor	0°C ~ +60°C
Schutzklasse	IP40
Arbeitszyklus	100%
Wartung	Auf Lebensdauer vorgeschmiert

Sämtliche in obigen Tabellen aufgeführten Daten zu den dynamischen Tragzahlen (des Linearführungssystems) sind theoretische Werte ohne Sicherheitsfaktor. Der Sicherheitsfaktor hängt von der Anwendung und der erforderlichen Sicherheit und Lebensdauer ab.

Wir empfehlen einen dynamischen Sicherheitsfaktor von mindestens 5,0. Auf Seite 75 werden die Berechnung des Sicherheitsfaktors des Linearführungssystems sowie der Einfluss der Belastung auf die Lebensdauer dargestellt.

Masse und Massenträgheitsmoment

MGTB	Bewegte Masse ¹	Masse der Lineareinheit²	Massenträgheitsmoment
ohne Motor	m _{m, MGTB} [kg]	m _{мбтв} [kg]	J _{MGTB} [10⁻² kg cm²]
32	0,06	0,37 + 0,0012 × Gesamthub	9,19 + 0,0024 × Gesamthub + 110,339 × m _{Last}
45	0,15	0,92 + 0,0023 × Gesamthub	18,80 + 0,0022 × Gesamthub + 100,536 × m _{Last}
60	0,45	2,12 + 0,0041 × Gesamthub	81,72 + 0,0040 × Gesamthub + 154.110 × m _{Last}

¹ Die bewegte Masse wird bereits in der Gleichung zur Berechnung der Masse des Mini-Elektroschlittens m_{MGTB} und des Massenträgheitsmoments J_{MGTB} berücksichtigt. Die bewegte Masse beinhaltet die Masse des Tischteils.

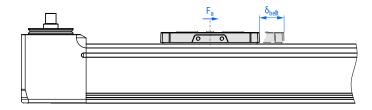
² Bei Kombination mit Standardmotor und Motoradapter VK ist die Masse m_{MGTB} um m_{VK+m} zu erhöhen. Siehe hierzu nachfolgende Tabelle.

Gesamthub	Gesamthub	[mm]
m _{Last}	Zusätzlich zu bewegende Masse	[kg]

Zusätzliche Masse der Lineareinheit bei Kombination des Motors mit dem Motoradapter VK

	Ma	tor	Motor ohne Bremse	Motor mit Bremse					
MGTB	IVIO	tor	Masse des Motors und Motoradapters VK						
	Тур	Größe □[mm]	m _{vK+m} [kg]						
32		42	0,52	0,65					
45		42	0,57	0,70					
45	Schrittmotor	56	1,31	1,50					
CO		56	1,50	1,69					
60		86	Derzeit nich	nt verfügbar					

² Es wird von einer Beschleunigung des Tischteils von 2 m/s² ausgegangen.

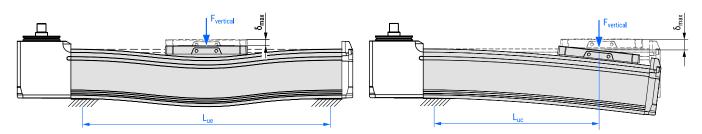

Flächenträgheitsmoment

MGTB	Pro	ofil
MIGID	l _y [cm⁴]	I _z [cm⁴]
32	4,3	4,6
45	14,3	15,9
60	43,8	50,3

Haltemoment einer Motorbremse

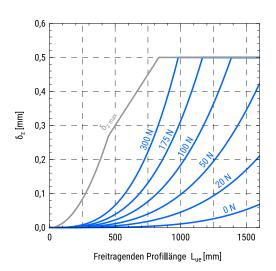
Mot	or	Haltemament (Premse)
Тур	Größe□ [mm]	Haltemoment (Bremse) [Nm]
	42	0,4
Schrittmotor	56	1,0
Commitmotor	86	Derzeit nicht verfügbar

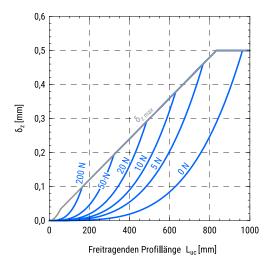

Verformung des Zahnriemens bei Axialbelastung

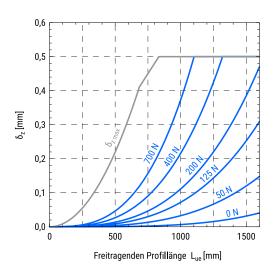

i Im folgenden Diagramm ist die maximale Längung des Zahnriemens in Abhängigkeit vom Gesamthub und einer gegebenen Axialbelastung dargestellt.

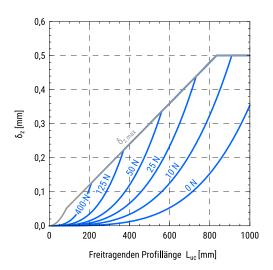
Die maximale Längung des Zahnriemens $\delta_{beltr max}$ ändert sich proportional zum Verhältnis zwischen der tatsächlichen Axialbelastung F_a und der im Diagramm für die jeweilige Größe der Lineareinheit MGTB angegebenen spezifischen Axialbelastung.

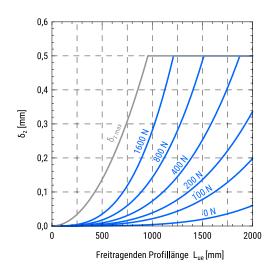
Für weitere Informationen über den Gesamthub siehe Abschnitt "Abmessungen \rightarrow Gesamthub und Länge der MGTB-Definition".

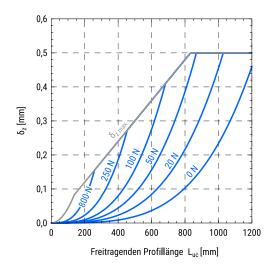



Auslenkung der Lineareinheit in Funktion zu einer vertikalen Kraft und der freitragenden Profillänge

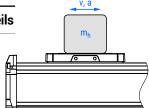

i In den folgenden Diagrammen wird die Auslenkung der Lineareinheit in Funktion zu einer vertikalen Kraft und der freitragenden Profillänge dargestellt. Für den Fall, dass beide Enden des Profils abgestützt werden und für den Fall einer Konsolenmontage sollten die unten stehenden Diagramme links bzw. rechts beachtet werden.

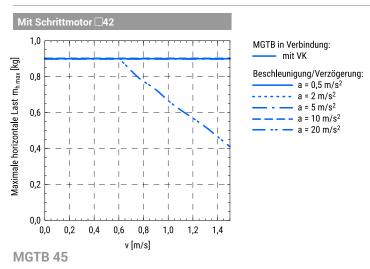

MGTB 32

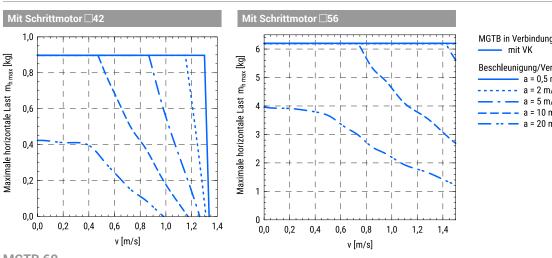



MGTB 45

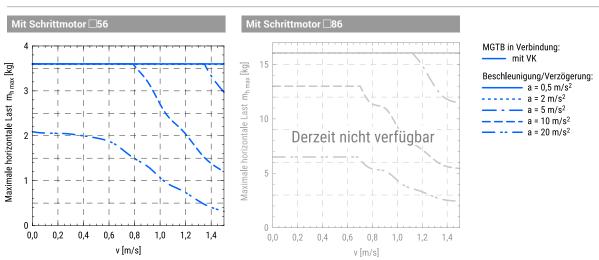
MGTB 60

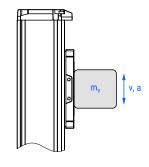


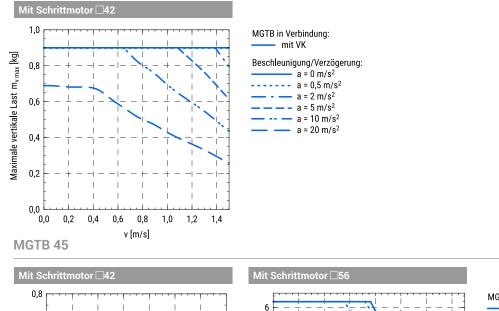

41

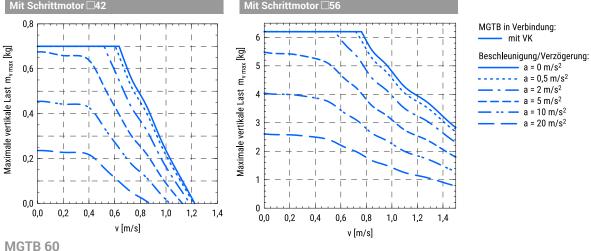

Maximale horizontale Last in Funktion zur Hubgeschwindigkeit und Beschleunigung des Tischteils


i In den folgenden Diagrammen sind die maximalen auf das Tischteil wirkenden horizontalen Lasten in Funktion zur Hubgeschwindigkeit für verschiedene Beschleunigungen und zu verschiedenen Kombinationen von Standardmotoren dargestellt. Der Motoradapter VK ist berücksichtigt.

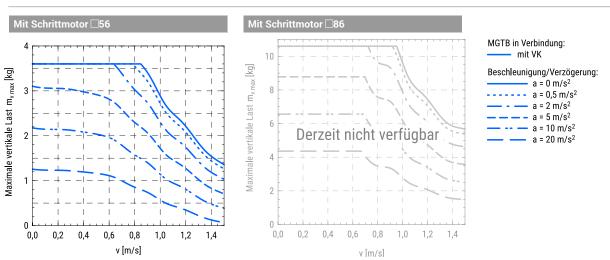


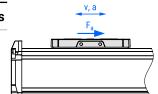


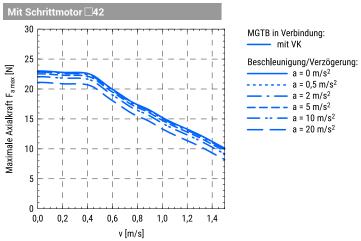



Maximale vertikale Last in Funktion zur Hubgeschwindigkeit und Beschleunigung des Tischteils

🚺 In den folgenden Diagrammen sind die maximalen auf das Tischteil wirkenden vertikalen Lasten in Funktion zur Hubgeschwindigkeit für verschiedene Beschleunigungen und zu verschiedenen Kombinationen von Standardmotoren dargestellt. Der Motoradapter VK ist berücksichtigt.

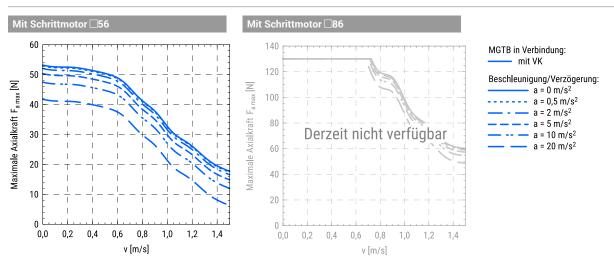

Die unten stehenden Diagramme gelten für die Lineareinheiten mit einem Gesamthub von 500 mm.

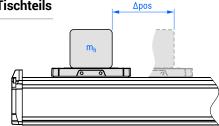


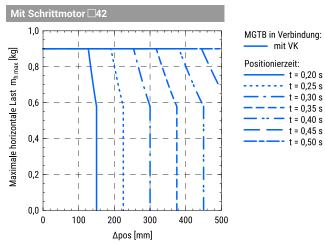


Maximale Axialbelastung in Funktion zur Hubgeschwindigkeit und Beschleunigung des Tischteils

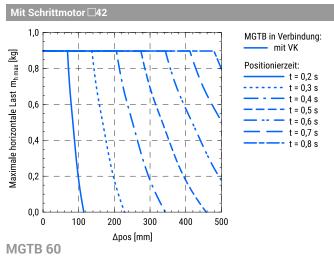
in den folgenden Diagrammen ist die maximale auf das Tischteil wirkende Axialbelastung in Funktion zur Hubgeschwindigkeit für verschiedene Beschleunigungen und zu verschiedenen Kombinationen von Standardmotoren dargestellt. Der Motoradapter VK ist berücksichtigt. Die unten stehenden Diagramme gelten für die Lineareinheiten mit einem Gesamthub von 500 mm.

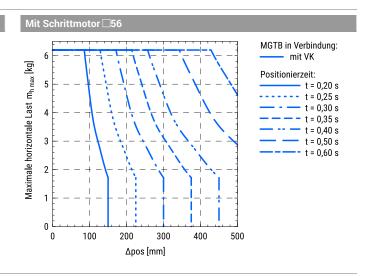


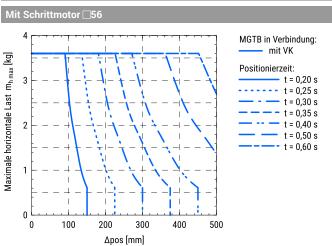


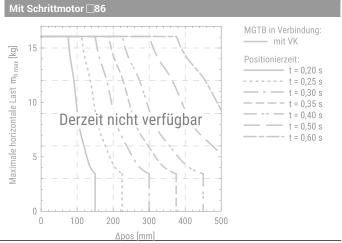

Maximale horizontale Last in Funktion zur Positionsänderung und Positionierzeit des Tischteils

In den folgenden Diagrammen ist die maximale Nutzlast dargestellt, die innerhalb eines Positionierzeitrahmens auf einer bestimmten horizontalen Strecke bewegt werden kann. Dabei wird eine Beschleunigung/Verzögerung von 100 ms berücksichtigt.

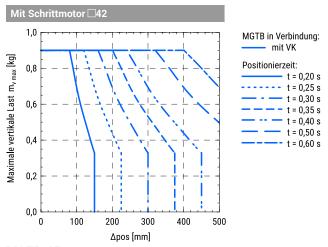

In den Diagrammen werden verschiedene Kombinationen von Standardmotoren berücksichtigt. Der Motoradapter VK ist berücksichtigt.

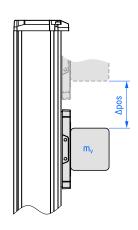

Die unten stehenden Diagramme gelten für die Lineareinheiten mit einem Gesamthub von 500 mm.



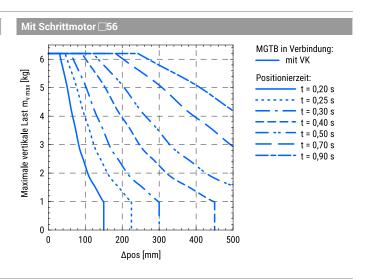


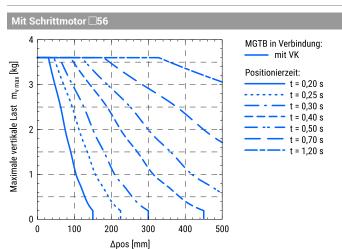
MGTB 45

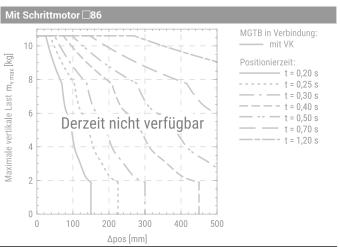


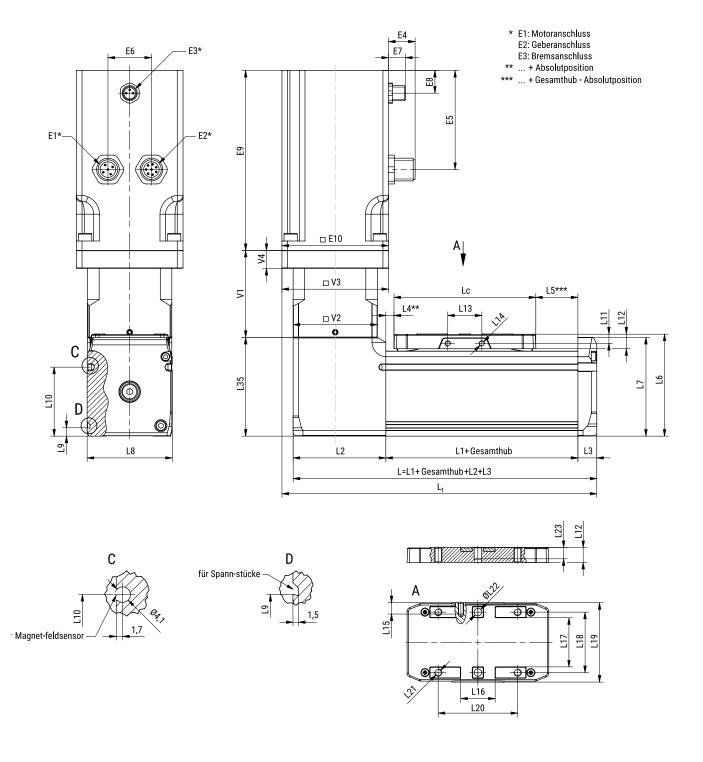

Maximale vertikale Last in Funktion zur Positionsänderung und Positionierzeit des Tischteils

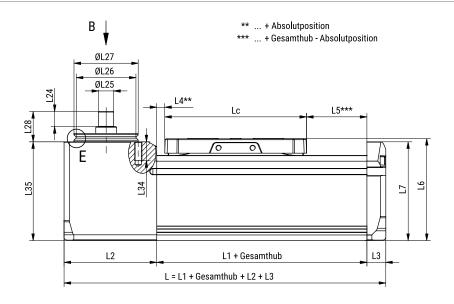

🚺 In den folgenden Diagrammen ist die maximale Nutzlast dargestellt, die innerhalb eines Positionierzeitrahmens auf einer bestimmten vertikalen Strecke bewegt werden kann. Dabei wird eine Beschleunigung/Verzögerung von 100 ms berücksichtigt. In den Diagrammen werden verschiedene Kombinationen von Standardmotoren berücksichtigt. Der Motoradapter VK ist berücksichtigt.

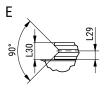

Die unten stehenden Diagramme gelten für die Lineareinheiten mit einem Gesamthub von 500 mm.

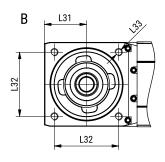

MGTB 32






ABMESSUNGEN


i Alle Abmessungen in mm. Die Zeichnungsmaßstäbe können unterschiedlich sein.

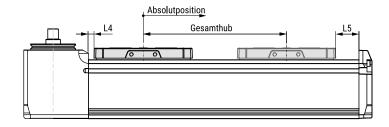

MGTB in Verbindung mit Standardmotor und Motoradapter VK

MGTB ohne Motor

MGTB Abmessungen

MGTB	Lc	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	ØL22 (H7)
32	65	104	32,75	8	2,5	36,5	38,5	35,75	32	4,4	23,7	4	5,9	18	M2	4	14,6	18,4	22,5	30	35	МЗ	2
45	75	124	49	10	4,3	44,7	54	52,25	45	4,4	36,5	5	7,8	18	МЗ	6	18,6	16,4	32	42	42	M4	4
60	90	139	64	12	3,2	45,8	72	68,75	60	4,4	45	6	11	30	M4	6	25,4	38,4	45	57	55	M5	5

MGTB	L23	L24	ØL25 (h7)	ØL26	ØL27 (h7)	L28	L29	L30	L31	L32	L33	L34	L35
32	5	7	5	22,6	25	14	2,3	4,5	15,75	24,5	МЗ	3	37,75
45	6	8	8	31,6	34	16	2,3	4,5	22,25	34	M4	10	54,85
60	8	10	10	39,6	42	20	2,3	4,5	29,75	48	M5	10	72,50


Motoradapter VK Abmessungen

	Moto	r				
MGTB	Тур	Größe □ [mm]	V1	□ V2	□ V3	V4
32		28	36	31,5	31,5	0
32		42	40	31,5	42	5,5
45	Schrittmotor	42	42	44,5	44,5	0
40	Schilttinotoi	56	46	44,5	56,4	9,5
60		56	52,5	59,5	59,5	0
00		86	69	59,5	86	9,5

Motorabmessungen

Motor						E4	E5		E7	E8	E9	
Тур	Größe □ [mm]	Bremse	E1	E2	E3	(±1)	(±0,3)	E6	(±1)	(±0,3)	(±1)	□E10
	28	_	Derzeit nicht verfügbar									
	28	mit										
	42	_	M12 5-polig	M12 8-polig	-	14	14	19,5	-	_	70,4	42,3
Schrittmotor	42	mit	M12 5-polig	M12 8-polig	M8 3-polig	14	14	19,5	9	27	106,4	42,3
Schillinotol	56	_	M12 5-polig	M12 8-polig	_	14	13,4	23	-	_	98	56,4
	56	mit	M12 5-polig	M12 8-polig	M8 3-polig	14	52,4	23	9	12	138	56,4
	86	_	Downsia wisha word? when									
	86	mit	Derzeit nicht verfügbar									

Gesamthub der MGBS-Konfiguration

i Die Abmessungen L4 und L5 sind in den obigen Tabellen der Maßzeichnungen aufgeführt.

Definition Gesamthub

Gesamthub = Hub effektiv + 2 × Hubreserve

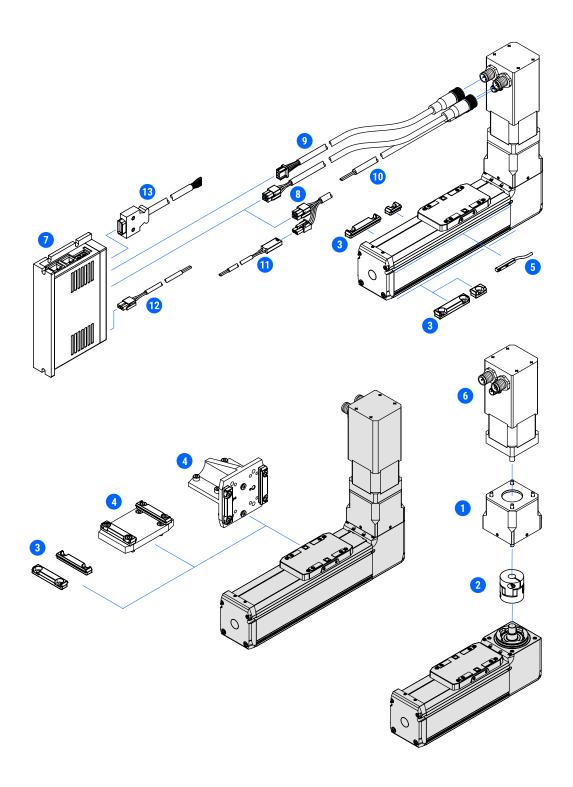
i Die Lineareinheit MGTB verfügt über keinen Sicherheitshub. Der Gesamthub ist der Abstand zwischen den beiden Endpositionen des Tischteils, die physikalisch so weit wie möglich voneinander entfernt sind.

Definition Länge

Mit VK und einem Motor.

$$L_t = L + \frac{(V3 - V2)}{2}$$

Ohne Motor.


 $L_t = L$

L = L2 + L1 + Gesamthub + L3

i Die Längen L und L_t sind so definiert, wie sie in den obigen Maßzeichnungen dargestellt sind, wobei die Längen des Motors und des Motoradapters VK ebenfalls berücksichtigt sind.

Gesamthub	Gesamthub	[mm]		
Absolutposition	Absolutposition	[mm]		
L	Länge	[mm]		
Lt	Gesamtlänge	[mm]		

ZUBEHÖR

ZUBEHÖR

#	Zubehör	Mit Größe der MGBS kompatibel			Seite	
#	Zubellor	32	45	60	Seite	
1	Motoradapter VK	•	•	•	59	Motoradapter
2	Kupplung	•	•	•	60	Elastomerkupplungen
3	Spannstücke	•	•	•	63	Befestigungszubehör
4	Verbindungsplatte	•	•	•	64	Berestigungszübenöi
5	Magnetfeldsensor	•	•	•	66	Endschalter
6	Motor	•	•	•	67	Motoren
7	Antrieb	•	•	•	68	Antriebe
8	Motorkabel ¹	0 1	•	•	69	
9	Geberkabel	•	•	•	69	
10	Bremskabel ¹	0 1	•	•	69	
11	Verbindungskabel Motorbremse - Reglerklemme ¹	•	_	_	69	Kabel
12	Stromkabel	•	•	•	71	
13	Signalkabel	•	•	•	71	

¹ Beim Schrittmotor der Größe 28 sind Motor- und Bremskabel in einem Kabel zusammengefasst. Für die Verbindung zwischen Bremse und Reglerklemme wird ein zusätzliches Kabel, das Verbindungskabel Motorbremse - Reglerklemme, verwendet.