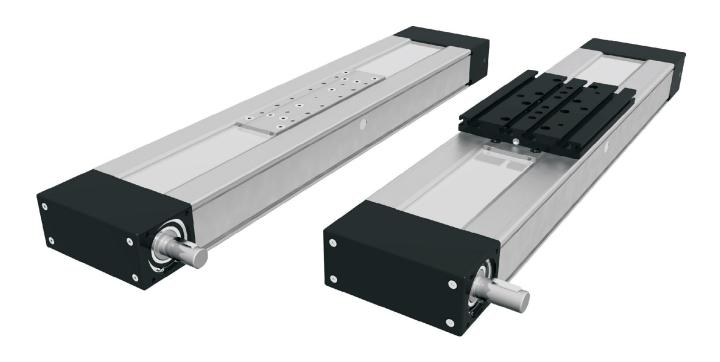
#### **EIGENSCHAFTEN**

Die **CTJ-** Baureihe umfasst Lineareinheiten mit einem Zahnriemenantrieb und zwei parallelen, integrierten, spielfreien Schienenführungen. Kompakte Abmessungen ermöglichen hohe Leistungsmerkmale, wie sehr hohe Geschwindigkeiten und eine hohe Wiederholgenauigkeit.

Diese Lineareinheiten können problemlos zu Mehrachssystemen kombiniert werden.

Ein gutes Preis-/Leistungsverhältnis und eine kurze Lieferzeit sind dabei gewährleistet.

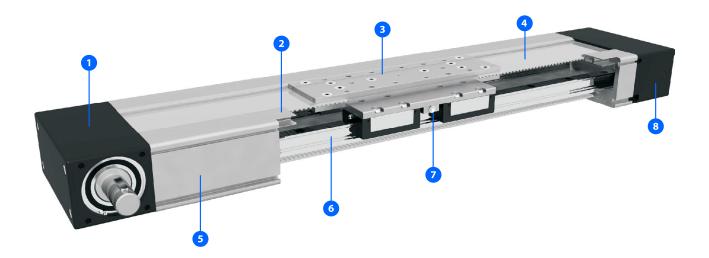

Ein kompaktes, präzisionsgezogenes Aluminiumprofil aus AL 6063, mit zwei parallelen, integrierten, spielfreien Schienenführungssystemen, ermöglicht hohe Tragzahlen und einen optimalen Ablauf bei der Bewegung großer Massen mit hoher Geschwindigkeit.

In den Lineareinheiten CTJ wird ein vorgespannter stahlverstärkter AT-Zahnriemen aus Polyurethan eingesetzt. In Verbindung mit einer Nullspiel-Zahnriemenscheibe können hohe Antriebsmomente mit Wechselbelastungen bei guter Positioniergenauigkeit, niedrigem Verschleiß und geringer Geräuschentwicklung realisiert werden.

Der Polyurethanriemen schützt alle im Profil liegenden Teile vor Staub und anderen Verschmutzungen. Verschiedene Tischteillängen mit Schmiernippeln ermöglichen eine einfache Nachschmierung der Schienenführung und bieten die Möglichkeit, weiteres Zubehör zu befestigen. Ebenfalls ist das Nachschmieren über Wartungsbohrungen an der Seite des Grundprofils möglich.

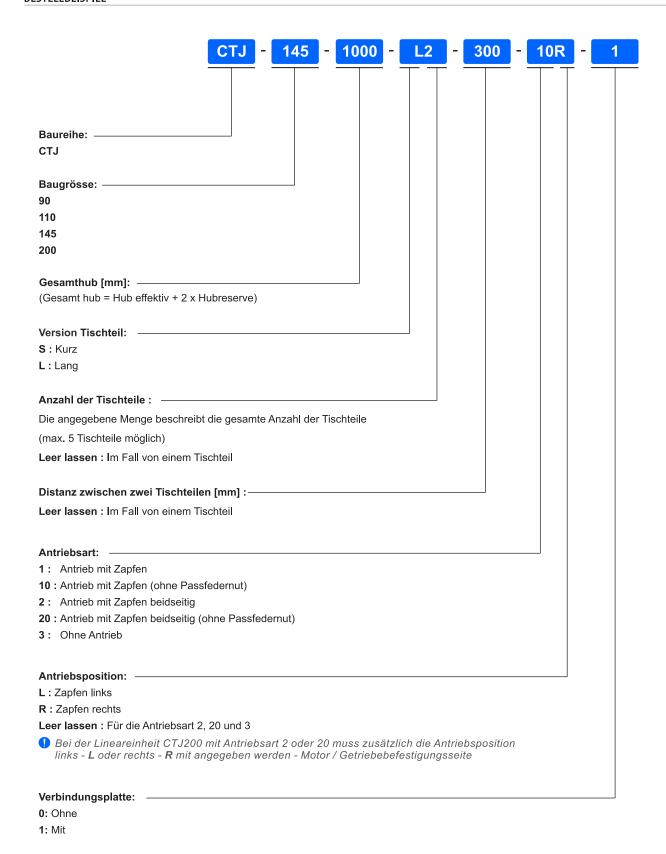
Das Aluminiumprofil enthält T-Nuten zur Befestigung der Lineareinheit und zum Anbringen von Sensoren und Schaltern.

Für die Lineareinheiten CTJ stehen diverse Adaptionsmöglichkeiten für das Anbringen (oder Umlenken) von Motoren oder Getrieben zur Verfügung.






Die Aluminiumprofile werden nach EN 12020-2 mittel gefertigt

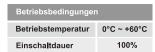

Geradheit = 0,35 mm/m; max. Verwindung = 0,35 mm/m; Winkeltoleranz = 0,2 mm/40 mm; Parallelität = 0,2 mm

### **AUFBAU**



- 1 Antriebskopf mit Riemenscheibe
   2 Aluminiumabdeckung
   3 Tischteil mit eingebauten Magneten
   4 Stahlverstärkter AT-Zahnriemen aus Polyurethan
   5 Aluminiumprofil harteloxiert
   6 Zwei integrierte Kugelschienenführungen
   7 Zentralschmierung; beidseitig
   8 Endkopf; Spannseite mit integriertem Riemenspannsystem

### **BESTELLBEISPIEL**




#### Allgemeine technische Daten

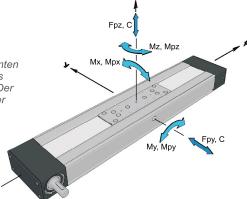
| Linear-<br>einheit | Tischteil-<br>länge | ① Dynamische<br>Tragzahl | <b>()</b> D | ynamisch<br>Moment |              |            | Max. zu<br>äfte | lässige l     | Belastun<br>Momente |               | Bewegte<br>Masse | Wiederho <b>l-</b>    | * Max.<br>Länge | * Max.<br>Hub | ** Min.<br>Hub |
|--------------------|---------------------|--------------------------|-------------|--------------------|--------------|------------|-----------------|---------------|---------------------|---------------|------------------|-----------------------|-----------------|---------------|----------------|
|                    | Lv [ mm ]           | C[N]                     | Mx<br>[Nm]  | My<br>[ Nm ]       | Mz<br>[ Nm ] | Fpy<br>[N] | Fpz<br>[N]      | Mpx<br>[ Nm ] | Mpy<br>[ Nm ]       | Mpz<br>[ Nm ] | [ kg ]           | genauigkeit<br>[ mm ] | Lmax [ mm ]     | [ mm ]        | [ mm ]         |
| CTJ 90 S           | 102                 | 4620                     | 125         | 17                 | 34           | 2000       | 4000            | 110           | 17                  | 34            | 0,20             | ± 0,08                | 0000            | 5873          | 25             |
| CTJ 90 L           | 156                 | 9240                     | 250         | 290                | 290          | 3990       | 8270            | 200           | 290                 | 125           | 0,35             | ± 0,08                | 6000            | 5819          | 25             |

<sup>\*</sup>Bei größeren Längen / Hüben nehmen Sie bitte Kontakt mit uns auf.

Die angegebenen max. Hübe gelten nicht für Lineareinheiten mit mehreren Tischteilen (es muss die Gleichung zum definieren der Länge der Lineareinheit für die Größe der Lineareinheit genutzt werden).



Bei Betriebstemperaturen außerhalb der angegebenen Werte nehmen Sie bitte Kontakt mit uns auf.

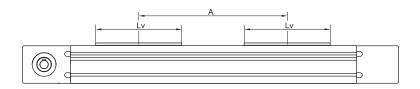



#### Empfohlene Belastungswerte

Alle angegebene Daten zu den dynamischen Momenten und Tragzahlen in obiger Tabelle sind theoretisch. Es wurde hierbei kein Sicherheitsfaktor berücksichtigt. Der Sicherheitsfaktor hängt von der Anwendung und Ihrer angeforderten Sicherheit ab. Wir empfehlen einen Mindestsicherheitsfaktor (fs = 5,0).

#### Elastizitätsmodul

E = 70000 N / mm<sup>2</sup>




#### Allgemeine technische Daten für doppelte Tischteile

| Linear- | Tischteil | Dynamische | *       | Dynamisches Mome | ent       | * Max. zulässige Belastungen |        |            |            |            |  |  |
|---------|-----------|------------|---------|------------------|-----------|------------------------------|--------|------------|------------|------------|--|--|
| einheit | Version   | Tragzahl   |         |                  |           | Kra                          | äfte   |            | Momente    |            |  |  |
|         |           | C[N]       | Mx [Nm] | My [ Nm ]        | Mz [ Nm ] | Fpy [ N ]                    | Fpz[N] | Mpx [ Nm ] | Мру [ Nm ] | Mpz [ Nm ] |  |  |
| CTJ 90  | S2        | 9230       | 250     | 4,6 × A          | 4,6 × A   | 4000                         | 8000   | 220        | 4,0 × A    | 2,0 × A    |  |  |
| C13 90  | L2        | 18400      | 500     | 9,2 × A          | 9,2 × A   | 8000                         | 16500  | 400        | 8,3 × A    | 4,0 × A    |  |  |

<sup>\*</sup>A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten.





| Linear-<br>einheit | **<br>Maximale<br>Geschwindigkeit | Maximales<br>Antriebsmoment<br>Ma | *<br>Leerlaufmoment | Hub pro<br>Umdrehung | Durchmesser<br>der<br>Riemenscheibe | Riementyp | Riemen-<br>breite | Maximale<br>Riemen-<br>betriebskraft | Spezifische<br>Federrate<br>Cspec | **<br>Max.<br>Beschleu-<br>nigung |
|--------------------|-----------------------------------|-----------------------------------|---------------------|----------------------|-------------------------------------|-----------|-------------------|--------------------------------------|-----------------------------------|-----------------------------------|
|                    | [m/s]                             | [ Nm ]                            | [ Nm ]              | [ mm / rev ]         | [ mm ]                              |           | [ mm ]            | [ N ]                                | [ N ]                             | [ m/s²]                           |
| CTJ 90 S           | -                                 | 7,5                               | 0,40 × nc           | 90                   | 28,65                               | AT 3      | 35                | 520                                  | 402500                            | 70                                |
| CTJ 90 L           | 5                                 | 7,5                               | 0,42 × nc           | 90                   | 20,05                               | Als       | 35                | 520                                  | 402500                            | 70                                |

<sup>\*</sup>Die angegebenen Werte gelten für Hübe (ebenso zählt die Distanz A, der Mittenabstand zwischen mehreren Tischteilen, hinzu) bis 500mm.

Das Leerlaufmoment steigt mit einer Verlängerung des Hubes (sowie durch das Maß A).

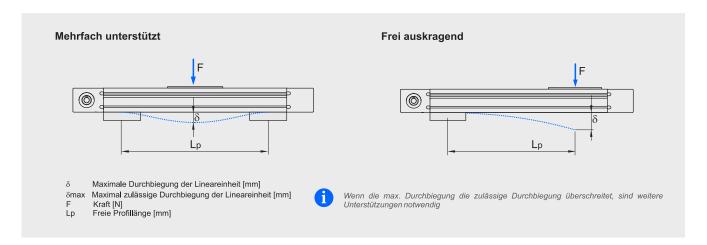
nc - Anzahl der Tischteile

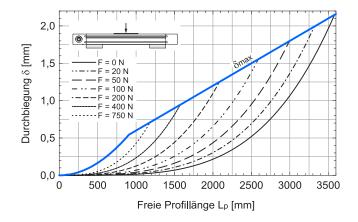
<sup>\*\*\*</sup>Bei kleineren Hüben nehmen Sie bitte Kontakt mit uns auf.

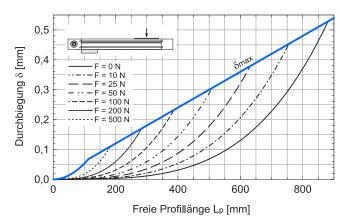
<sup>\*\*</sup>Bei größeren gewünschten Geschwindigkeiten und Beschleunigungen als in der Tabelle oberhalb aufgeführt, nehmen Sie bitte Kontakt mit uns auf.

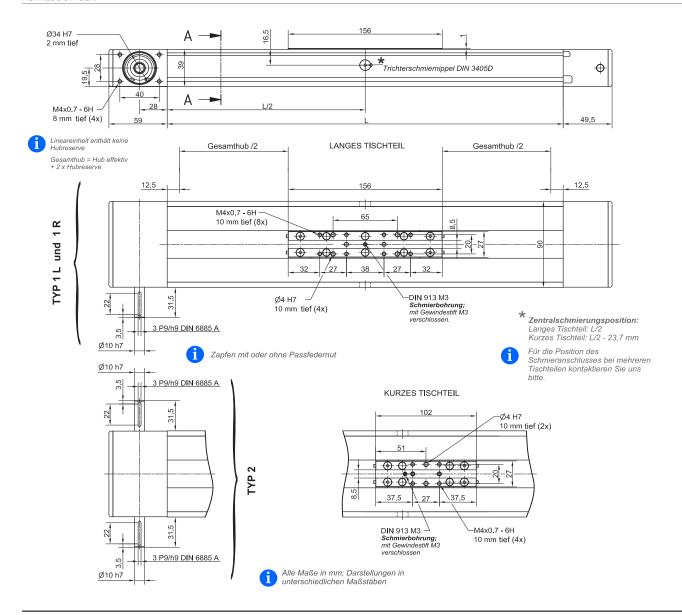
## **Gewicht und Trägheitsmomente**

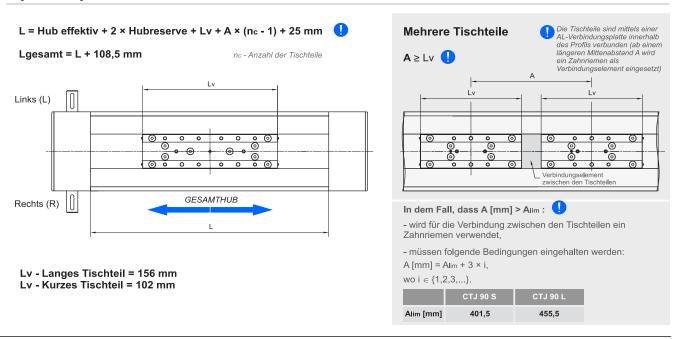
| Linear-<br>einheit | Gewicht der Lineareinheit                                   | Massenträgheitsmoment                                     |           | rägheits-<br>nent      |
|--------------------|-------------------------------------------------------------|-----------------------------------------------------------|-----------|------------------------|
|                    | [ kg ]                                                      | [ 10 <sup>-5</sup> kg m <sup>2</sup> ]                    | ly [ cm⁴] | lz [ cm <sup>4</sup> ] |
| CTJ 90 S           | 1,7 + 0,0048 × (Gesamthub + (nc - 1) × A) + 0,20 × (nc - 1) | 7 + 0,0031 × (Gesamthub + (nc - 1) × A) + 4,1 × (nc - 1)  | 13.4      | 407.0                  |
| CTJ 90 L           | 2,1 + 0,0048 × (Gesamthub + (nc - 1) × A) + 0,35 × (nc - 1) | 11 + 0,0031 × (Gesamthub + (nc - 1) × A) + 7,2 × (nc - 1) | 13,4      | 107,0                  |

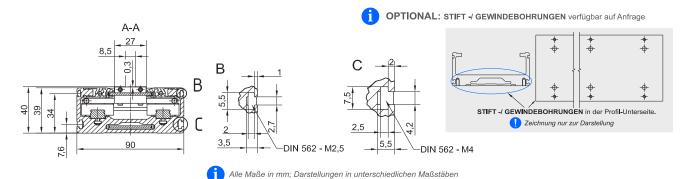

<sup>\*</sup> Gesamthub [mm]


A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten. nc - Anzahl der Tischteile





Gewichtsberechnung ohne Motor, Getriebe, Spannstück und Schalteranbau


# Durchbiegung der mechanischen Lineareinheit














### **VERBINDUNGSPLATTE**

#### **CTJ 90 L CTJ 90 S** 125 40 ±0,01 Ø4 H7 Ø9 H7 Ø9 H7 30<sup>±0,01</sup> 2,1 mm tief (4x) Für Zentrierring CR9 Zubehör Siehe Seite 8.000.0 2,1 mm tief (8x) Für Zentrierring CR9 Zubehör Siehe Seite 8.000.0 10 mm tief (2x) 20<sup>±0,01</sup> 13,5<sup>±0,01</sup> ±0,01 20 $\odot$ (0) <del>(0)</del> 90 $\odot$ $\oplus$ 45 38<sup>±0,01</sup> 38<sup>±0,01</sup> 7,6 Trichterschmiernippel DIN 3405D (beidseitig) Trichterschmiernippel DIN 3405D (beidseitig) D Ε Nutenstein DIN 562 - M4 Mehr Informationen auf Seite 8.005.0

| Lineareinheit | Plattenlänge<br>[ mm ] | Gewicht<br>[ kg ] | Code  |
|---------------|------------------------|-------------------|-------|
| CTJ 90 S      | 60                     | 0,2               | 48853 |
| CTJ 90 L      | 125                    | 0,4               | 48854 |



Bitte beachten Sie unseren Hinweis in der Wartungs- und Montageanleitung

# Montage des Antriebs





#### Allgemeine technische Daten

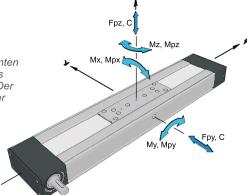
| Linear-<br>einheit | Tischteil-<br>länge | i Dynamische<br>Tragzahl | <b>()</b> D | ynamisch<br>Moment | es           | N<br>Krá   |            |               | Be <b>l</b> astur<br>Momento |               | Bewegte<br>Masse | Max.<br>Wiederhol-    | * Max.<br>Länge | * Max.<br>Hub | ** Min.<br>Hub |
|--------------------|---------------------|--------------------------|-------------|--------------------|--------------|------------|------------|---------------|------------------------------|---------------|------------------|-----------------------|-----------------|---------------|----------------|
|                    | Lv [ mm ]           | C[N]                     | Mx<br>[Nm]  | My<br>[ Nm ]       | Mz<br>[ Nm ] | Fpy<br>[N] | Fpz<br>[N] | Mpx<br>[ Nm ] | Mpy<br>[ Nm ]                | Mpz<br>[ Nm ] | [ kg ]           | genauigkeit<br>[ mm ] | Lmax [ mm ]     | [ mm ]        | [ mm ]         |
| CTJ 110 S          | 170                 | 19800                    | 610         | 118                | 235          | 6470       | 8390       | 260           | 90                           | 90            | 0,64             | ± 0,08                | 6000            | 5805          | 40             |
| CTJ 110 L          | 215                 | 39600                    | 1225        | 1680               | 1680         | 13080      | 18820      | 525           | 880                          | 550           | 0,98             | ± 0,08                | 0000            | 5760          | 40             |

 $<sup>^{</sup>f *}$ Bei größeren Längen / Hüben nehmen Sie bitte Kontakt mit uns auf.

Die angegebenen max. Hübe gelten nicht für Lineareinheiten mit mehreren Tischteilen (es muss die Gleichung zum definieren der Länge der Lineareinheit für die Größe der Lineareinheit genutzt werden).



Bei Betriebstemperaturen außerhalb der angegebenen Werte nehmen Sie bitte Kontakt mit uns auf.

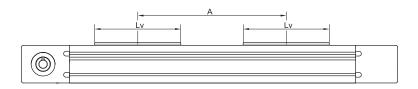



#### Empfohlene Belastungswerte

Alle angegebene Daten zu den dynamischen Momenten und Tragzahlen in obiger Tabelle sind theoretisch. Es wurde hierbei kein Sicherheitsfaktor berücksichtigt. Der Sicherheitsfaktor hängt von der Anwendung und Ihrer angeforderten Sicherheit ab. Wir empfehlen einen Mindestsicherheitsfaktor (fs = 5,0).

#### Elastizitätsmodul

 $E = 70000 \text{ N} / \text{mm}^2$ 




#### Allgemeine technische Daten für doppelte Tischteile

| Linear- | Tischteil | Dynamische | *         | Dynamisches Mome | ent       | *         |        | Max. zuläss | ige Belastungen |            |
|---------|-----------|------------|-----------|------------------|-----------|-----------|--------|-------------|-----------------|------------|
| einheit | Version   | Tragzahl   |           |                  |           | Krá       | äfte   |             | Momente         |            |
|         |           | C [ N ]    | Mx [ Nm ] | My [ Nm ]        | Mz [ Nm ] | Fpy [ N ] | Fpz[N] | Mpx [ Nm ]  | Мру [ Nm ]      | Mpz [ Nm ] |
| CTJ 110 | S2        | 39600      | 1220      | 19,8 × A         | 19,8 × A  | 12940     | 16770  | 520         | 8,4 × A         | 6,5 × A    |
| C13 110 | L2        | 79200      | 2450      | 39,6 × A         | 39,6 × A  | 26150     | 37600  | 1050        | 18,8 × A        | 13,1 × A   |

<sup>\*</sup>A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten.





| Linear-<br>einheit | **<br>Maximale<br>Geschwindigkeit | Maximales<br>Antriebsmoment<br>Ma | *<br>Leerlaufmoment | Hub pro<br>Umdrehung | Durchmesser<br>der<br>Riemenscheibe | Riementyp | Riemen-<br>breite | Maximale<br>Riemen-<br>betriebskraft | Spezifische<br>Federrate<br>C <sub>spec</sub> | **<br>Max.<br>Beschleu-<br>nigung |
|--------------------|-----------------------------------|-----------------------------------|---------------------|----------------------|-------------------------------------|-----------|-------------------|--------------------------------------|-----------------------------------------------|-----------------------------------|
|                    | [m/s]                             | [ Nm ]                            | [ Nm ]              | [ mm / rev ]         | [ mm ]                              |           | [ mm ]            | [ N ]                                | [ N ]                                         | [ m/s²]                           |
| CTJ 110 S          | 6                                 | 15,7                              | 0,98 × nc           | 120                  | 38,20                               | AT 5      | 50                | 820                                  | 960000                                        | 70                                |
| CTJ 110 L          |                                   | 13,7                              | 1,00 × nc           | 120                  | 30,20                               | 71.3      | 30                | 020                                  | 30000                                         | 70                                |

<sup>\*</sup>Die angegebenen Werte gelten für Hübe (ebenso zählt die Distanz A, der Mittenabstand zwischen mehreren Tischteilen, hinzu) bis 500mm.

Das Leerlaufmoment steigt mit einer Verlängerung des Hubes (sowie durch das Maß A).

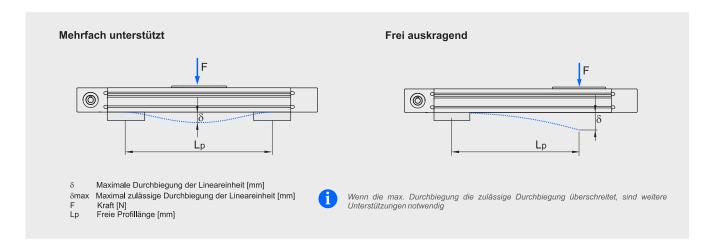
nc - Anzahl der Tischteile

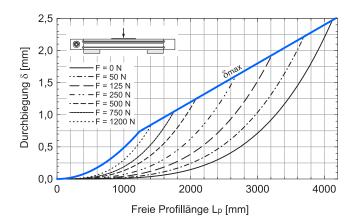
<sup>\*\*\*</sup>Bei kleineren Hüben nehmen Sie bitte Kontakt mit uns auf.

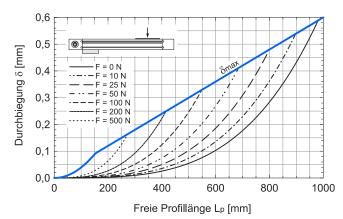
<sup>\*\*</sup>Bei größeren gewünschten Geschwindigkeiten und Beschleunigungen als in der Tabelle oberhalb aufgeführt, nehmen Sie bitte Kontakt mit uns auf.

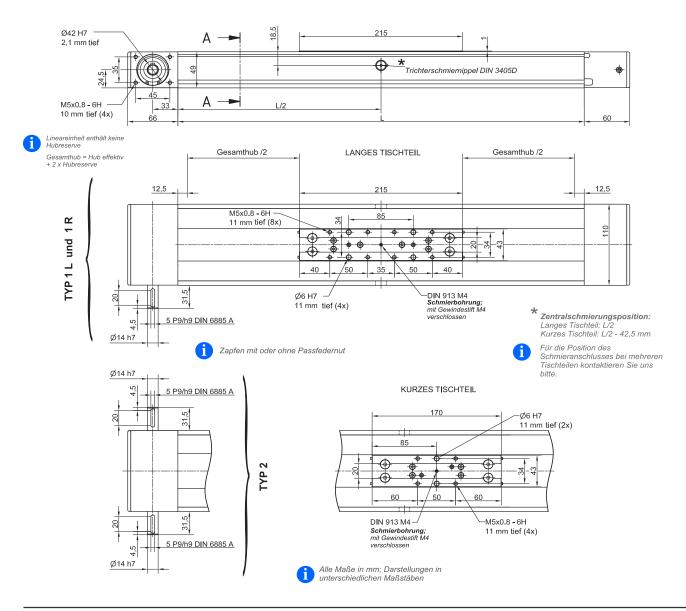
### **Gewicht und Trägheitsmomente**

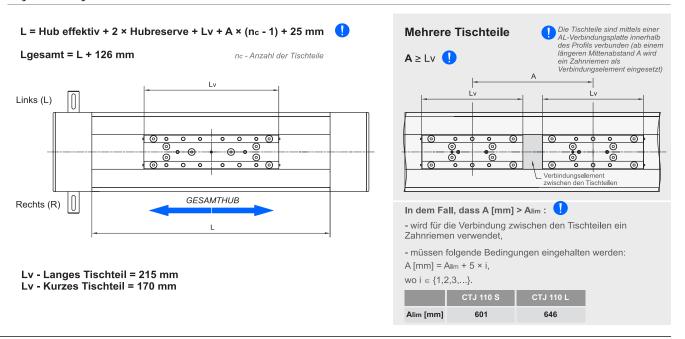
| Linear-<br>einheit | Gewicht der Lineareinheit                                   | Massenträgheitsmoment                                      |           | rägheits-<br>nent      |
|--------------------|-------------------------------------------------------------|------------------------------------------------------------|-----------|------------------------|
|                    | [ kg ]                                                      | [ 10 <sup>-5</sup> kg m <sup>2</sup> ]                     | ly [ cm⁴] | lz [ cm <sup>4</sup> ] |
| CTJ 110 S          | 3,6 + 0,0072 × (Gesamthub + (nc - 1) × A) + 0,64 × (nc - 1) | 36 + 0,0125 × (Gesamthub + (nc - 1) × A) + 23,3 × (nc - 1) | 31.1      | 217,2                  |
| CTJ 110 L          | 4,2 + 0,0072 × (Gesamthub + (nc - 1) × A) + 0,98 × (nc - 1) | 49 + 0,0125 × (Gesamthub + (nc - 1) × A) + 35,8 × (nc - 1) | 31,1      | 217,2                  |

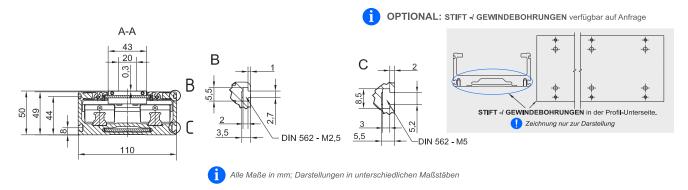

\* Gesamthub [mm]


A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten.

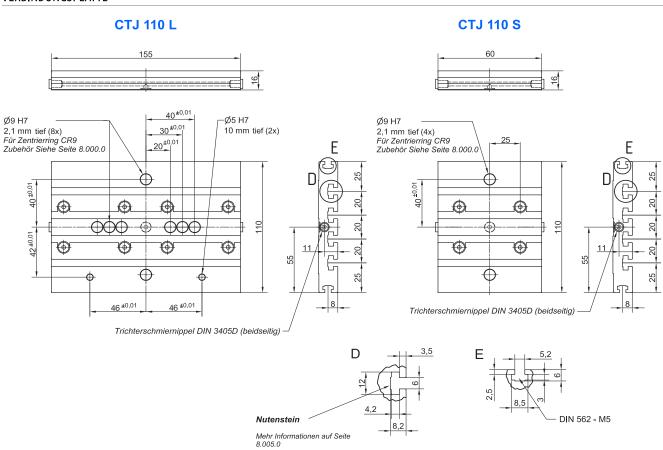




Gewichtsberechnung ohne Motor, Getriebe, Spannstück und Schalteranbau.


### Durchbiegung der mechanischen Lineareinheit












### **VERBINDUNGSPLATTE**



| Lineareinheit | Plattenlänge<br>[ mm ] | Gewicht<br>[ kg ] | Code   |
|---------------|------------------------|-------------------|--------|
| CTJ 110 S     | 60                     | 0,35              | 103663 |
| CTJ 110 L     | 155                    | 0,60              | 103662 |



Bitte beachten Sie unseren Hinweis in der Wartungs- und Montageanleitung

# Montage des Antriebs





### **Allgemeine technische Daten**

| Linear-<br>einheit | Tischteil-<br>länge | i Dynamische<br>Tragzahl | i D        | i Dynamisches<br>Moment |              |              | Max. zul<br>äfte |             | Belastun<br>Momente |               | Bewegte<br>Masse | Masse Wiederhol-      |             | * Max.<br>Hub | ** Min.<br>Hub |
|--------------------|---------------------|--------------------------|------------|-------------------------|--------------|--------------|------------------|-------------|---------------------|---------------|------------------|-----------------------|-------------|---------------|----------------|
|                    | Lv [ mm ]           | C[N]                     | Mx<br>[Nm] | My<br>[Nm]              | Mz<br>[ Nm ] | Fpy<br>[ N ] | Fpz<br>[N]       | Mpx<br>[Nm] | Mpy<br>[Nm]         | Mpz<br>[ Nm ] | [ kg ]           | genauigkeit<br>[ mm ] | Lmax [ mm ] | [ mm ]        | [ mm ]         |
| CTJ 145 S          | 180                 | 34200                    | 1500       | 260                     | 520          | 8930         | 15320            | 674         | 260                 | 180           | 1,35             | ± 0,08                | 6000        | 5795          | 55             |
| CTJ 145 L          | 240                 | 68400                    | 3005       | 3420                    | 3420         | 17870        | 30640            | 1200        | 1700                | 893           | 2,25             | ± 0,08                | 0000        | 5735          | 55             |

<sup>\*</sup>Bei größeren Längen / Hüben nehmen Sie bitte Kontakt mit uns auf.
Die angegebenen max. Hübe gelten nicht für Lineareinheiten mit mehreren Tischteilen
(es muss die Gleichung zum definieren der Länge der Lineareinheit für die Größe der Lineareinheit genutzt werden).



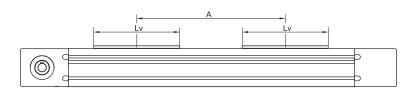
Bei Betriebstemperaturen außerhalb der angegebenen Werte nehmen Sie bitte Kontakt mit uns auf.



#### Empfohlene Belastungswerte

Alle angegebene Daten zu den dynamischen Momenten und Tragzahlen in obiger Tabelle sind theoretisch. Es wurde hierbei kein Sicherheitsfaktor berücksichtigt. Der Sicherheitsfaktor hängt von der Anwendung und Ihrer angeforderten Sicherheit ab. Wir empfehlen einen Mindestsicherheitsfaktor (fs = 5,0).

#### Elastizitätsmodul


 $E = 70000 \text{ N} / \text{mm}^2$ 

# Allgemeine technische Daten für doppelte Tischteile

| Linear- | Tischteil | Dynamische | *         | Dynamisches Mome | ent       | *      |        | Max. zulässige Belastungen |            |            |  |  |
|---------|-----------|------------|-----------|------------------|-----------|--------|--------|----------------------------|------------|------------|--|--|
| einheit | Version   | Tragzahl   |           |                  |           | Krä    | ifte   |                            | Momente    |            |  |  |
|         |           | C[N]       | Mx [ Nm ] | My [ Nm ]        | Mz [ Nm ] | Fpy[N] | Fpz[N] | Mpx [ Nm ]                 | Мру [ Nm ] | Mpz [ Nm ] |  |  |
| CTJ 145 | S2        | 68400      | 3000      | 34,2 × A         | 34,2 × A  | 17870  | 30640  | 1350                       | 15,3 × A   | 8,9 × A    |  |  |
| 010 140 | L2        | 136800     | 6000      | 68,4 × A         | 68,4 × A  | 35700  | 61200  | 2400                       | 30,6 × A   | 17,8 × A   |  |  |

<sup>\*</sup>A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten.





| Linear-   | **<br>Maximale<br>Geschwindigkeit | Maximales<br>Antriebsmoment<br>Ma | *<br>Leerlaufmoment | Hub pro<br>Umdrehung | Durchmesser<br>der<br>Riemenscheibe | Riementyp | Riemen-<br>breite | Maximale<br>Riemen-<br>betriebskraft | Spezifische<br>Federrate<br>Cspec | **<br>Max.<br>Beschleu-<br>nigung |
|-----------|-----------------------------------|-----------------------------------|---------------------|----------------------|-------------------------------------|-----------|-------------------|--------------------------------------|-----------------------------------|-----------------------------------|
|           | [m/s]                             | [ Nm ]                            | [ Nm ]              | [ mm / rev ]         | [ mm ]                              |           | [ mm ]            | [N]                                  | [ N ]                             | [ m/s²]                           |
| CTJ 145 S | 6                                 | 22.6                              | 1,48 × nc           | 165                  | 52,52                               | AT E      | 70                | 1280                                 | 4260000                           | 70                                |
| CTJ 145 L | ð                                 | 33,6                              | 1,50 × nc           | 165                  | 52,52                               | AT 5      | 70                | 1200                                 | 1360000                           | 70                                |

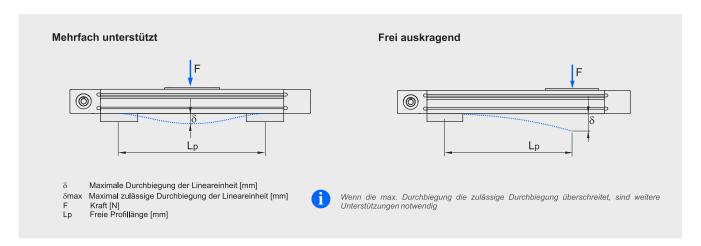
<sup>\*</sup>Die angegebenen Werte gelten für Hübe (ebenso zählt die Distanz A, der Mittenabstand zwischen mehreren Tischteilen, hinzu) bis 500mm. Das Leerlaufmoment steigt mit einer Verlängerung des Hubes (sowie durch das Maß A). nc - Anzahl der Tischteile

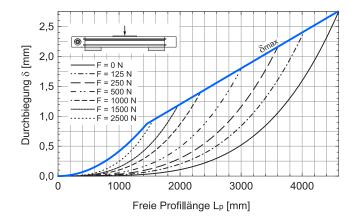
<sup>\*\*</sup>Bei kleineren Hüben nehmen Sie bitte Kontakt mit uns auf.

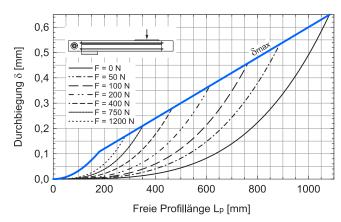
<sup>\*\*</sup>Bei größeren gewünschten Geschwindigkeiten und Beschleunigungen als in der Tabelle oberhalb aufgeführt, nehmen Sie bitte Kontakt mit uns auf.

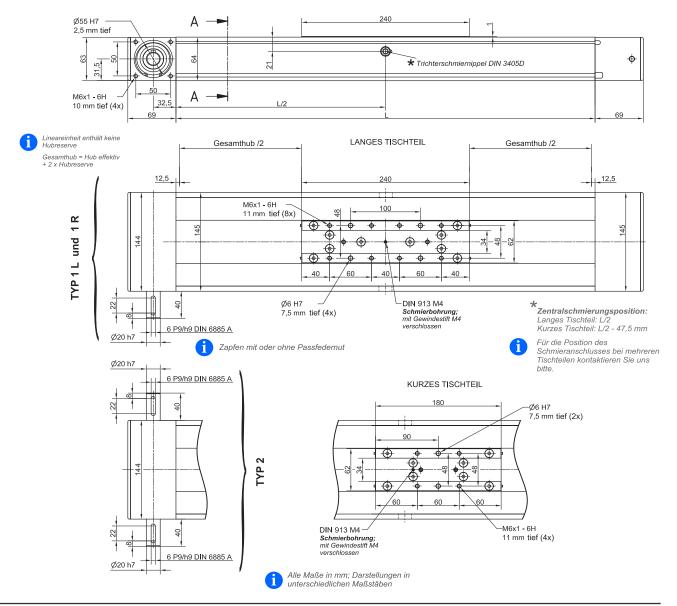
## **Gewicht und Trägheitsmomente**

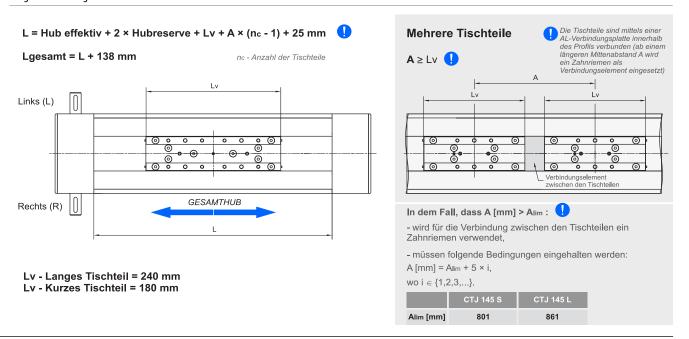
| Linear-<br>einheit | Gewicht der Lineareinheit                                   | Massenträgheitsmoment                                        |                        | rägheits-<br>nent      |  |
|--------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------|------------------------|--|
|                    | [ kg ]                                                      | [ 10 <sup>-5</sup> kg m <sup>2</sup> ]                       | ly [ cm <sup>4</sup> ] | lz [ cm <sup>4</sup> ] |  |
| CTJ 145 S          | 7,2 + 0,0127 × (Gesamthub + (nc - 1) × A) + 1,35 × (nc - 1) | 145 + 0,0330 × (Gesamthub + (nc - 1) × A) + 93,1 × (nc - 1)  | 78.9                   | 707.6                  |  |
| CTJ 145 L          | 8,8 + 0,0127 × (Gesamthub + (nc - 1) × A) + 2,25 × (nc - 1) | 208 + 0,0330 × (Gesamthub + (nc - 1) × A) + 155,2 × (nc - 1) | 10,9                   | 707,6                  |  |

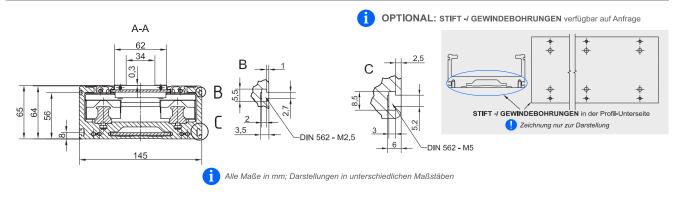

<sup>\*</sup>Gesamthub [mm]


A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten. nc - Anzahl der Tischteile



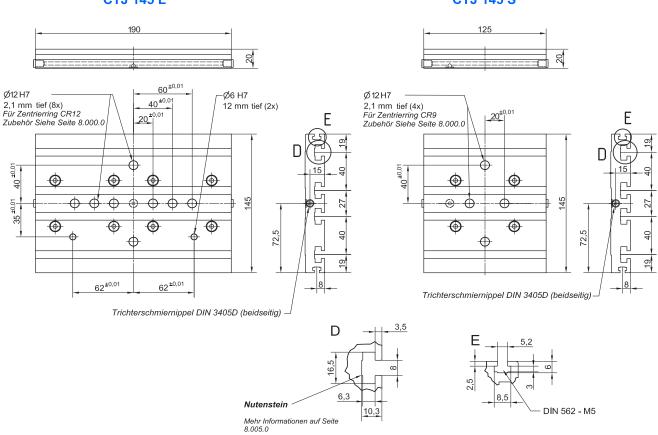


Gewichtsberechnung ohne Motor, Getriebe, Spannstück und Schalteranbau


### Durchbiegung der mechanischen Lineareinheit












### **VERBINDUNGSPLATTE**





| Lineareinheit | Plattenlänge<br>[ mm ] | Gewicht<br>[ kg ] | Code   |
|---------------|------------------------|-------------------|--------|
| CTJ 145 S     | 125                    | 0,8               | 103665 |
| CTJ 145 L     | 190                    | 1,3               | 103664 |



Bitte beachten Sie unseren Hinweis in der Wartungs- und Montageanleitung

# Montage des Antriebs





#### **Allgemeine technische Daten**

| Linear-<br>einheit | Tischteil-<br>länge | ① Dynamische<br>Tragzahl | i Dynamisches<br>Moment |              | Max. zulässige Belastungen<br>Kräfte Momente |              |            | Bewegte<br>Masse | Max.<br>Wiederhol- | * Max.<br>Länge | * Max.<br>Hub | ** Min.<br>Hub        |             |        |        |
|--------------------|---------------------|--------------------------|-------------------------|--------------|----------------------------------------------|--------------|------------|------------------|--------------------|-----------------|---------------|-----------------------|-------------|--------|--------|
|                    | Lv [ mm ]           | C[N]                     | Mx<br>[ Nm ]            | My<br>[ Nm ] | Mz<br>[ Nm ]                                 | Fpy<br>[ N ] | Fpz<br>[N] | Mpx<br>[ Nm ]    | Mpy<br>[ Nm ]      | Mpz<br>[ Nm ]   | [ kg ]        | genauigkeit<br>[ mm ] | Lmax [ mm ] | [ mm ] | [ mm ] |
| CTJ 200 S          | 265                 | 49600                    | 3235                    | 450          | 900                                          | 10000        | 24520      | 1600             | 450                | 308             | 3,05          | ± 0,08                | 6000        | 5710   | 65     |
| CTJ 200 L          | 405                 | 99200                    | 6470                    | 8680         | 8680                                         | 20000        | 50900      | 3250             | 4550               | 1750            | 5,70          | ± 0,08                | 0000        | 5570   | 65     |

<sup>\*</sup>Bei größeren Längen / Hüben nehmen Sie bitte Kontakt mit uns auf. Die angegebenen max. Hübe gelten nicht für Lineareinheiten mit mehreren Tischteilen (es muss die Gleichung zum definieren der Länge der Lineareinheit für die Größe der Lineareinheit genutzt werden).

Betriebsbedingungen

Betriebstemperatur 0°C ~ +60°C

Einschaltdauer 100%

Bei Betriebstemperaturen außerhalb der angegebenen Werte nehmen Sie bitte Kontakt mit uns auf.

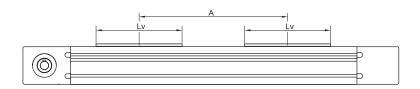


#### Empfohlene Belastungswerte

Alle angegebene Daten zu den dynamischen Momenten und Tragzahlen in obiger Tabelle sind theoretisch. Es wurde hierbei kein Sicherheitsfaktor berücksichtigt. Der Sicherheitsfaktor hängt von der Anwendung und Ihrer angeforderten Sicherheit ab. Wir empfehlen einen Mindestsicherheitsfaktor (fs = 5,0).

#### Elastizitätsmodul

 $E = 70000 \text{ N} / \text{mm}^2$ 




### Allgemeine technische Daten für doppelte Tischteile

| Linear- | Tischteil | Dynamische | * Dynamisches Moment |           |           |           | * Max. zulässige Belastungen |            |            |            |  |  |
|---------|-----------|------------|----------------------|-----------|-----------|-----------|------------------------------|------------|------------|------------|--|--|
| einheit | Version   | Tragzahl   |                      |           |           | Kräfte    |                              |            | Momente    |            |  |  |
|         |           | C[N]       | Mx [ Nm ]            | My [ Nm ] | Mz [ Nm ] | Fpy [ N ] | Fpz[N]                       | Mpx [ Nm ] | Мру [ Nm ] | Mpz [ Nm ] |  |  |
| CTJ 200 | S2        | 99200      | 6470                 | 49,6 × A  | 49,6 × A  | 20000     | 49040                        | 3200       | 24,5 × A   | 10,0 × A   |  |  |
| C13 200 | L2        | 198400     | 12940                | 99,2 × A  | 99,2 × A  | 40000     | 101800                       | 6500       | 50,9 × A   | 20,0 × A   |  |  |

<sup>\*</sup>A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten.





| Linear-<br>einheit | **<br>Maximale<br>Geschwindigkeit | Maxima <b>l</b> es<br>Antriebsmoment<br>Ma | *<br>Leerlaufmoment | Hub pro<br>Umdrehung | Durchmesser<br>der<br>Riemenscheibe | Riementyp | Riemen-<br>breite | Maximale<br>Riemen-<br>betriebskraft | Spezifische<br>Federrate<br>Cspec | **<br>Max.<br>Beschleu-<br>nigung |
|--------------------|-----------------------------------|--------------------------------------------|---------------------|----------------------|-------------------------------------|-----------|-------------------|--------------------------------------|-----------------------------------|-----------------------------------|
|                    | [m/s]                             | [ Nm ]                                     | [ Nm ]              | [ mm / rev ]         | [ mm ]                              |           | [ mm ]            | [ N ]                                | [ N ]                             | [ m/s <sup>2</sup> ]              |
| CTJ 200 S          | 6                                 | 102<br>mit Passfedernut                    | 3,5 × nc            | 250                  | 79.58                               | AT 10     | 100               | 2850                                 | 4350000                           | 70                                |
| CTJ 200 L          | Ů                                 | 113<br>ohne Passfedernut                   | 4,5 × nc            | 250                  | 79,58                               | AI IU     | 100               | 2650                                 | 4350000                           | 70                                |

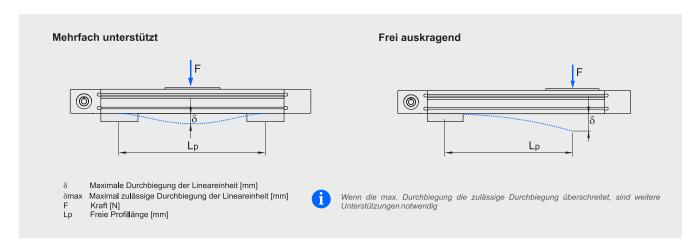
<sup>\*</sup>Die angegebenen Werte gelten für Hübe (ebenso zählt die Distanz A, der Mittenabstand zwischen mehreren Tischteilen, hinzu) bis 500mm. Das Leerlaufmoment steigt mit einer Verlängerung des Hubes (sowie durch das Maß A). nc - Anzahl der Tischteile

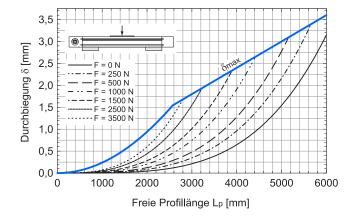
<sup>\*\*</sup>Bei kleineren Hüben nehmen Sie bitte Kontakt mit uns auf.

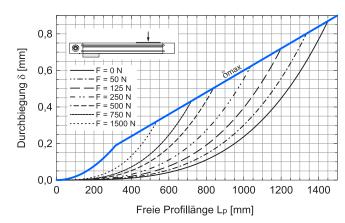
<sup>\*\*</sup>Bei größeren gewünschten Geschwindigkeiten und Beschleunigungen als in der Tabelle oberhalb aufgeführt, nehmen Sie bitte Kontakt mit uns auf.

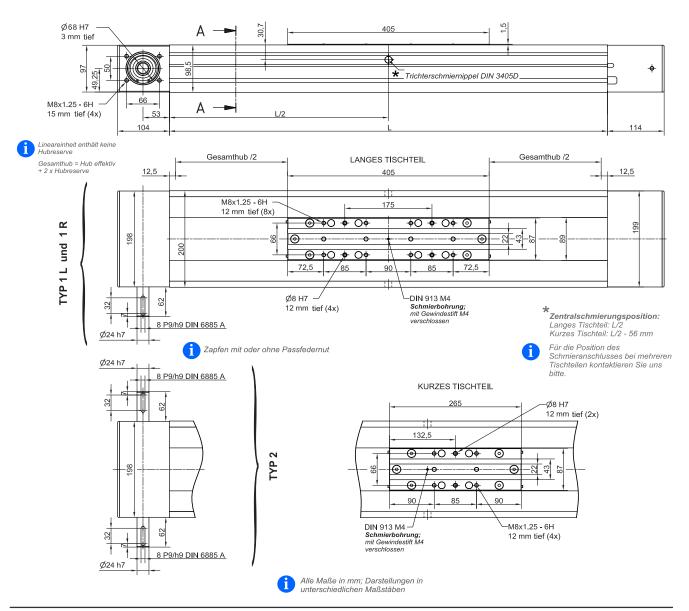
## **Gewicht und Trägheitsmomente**

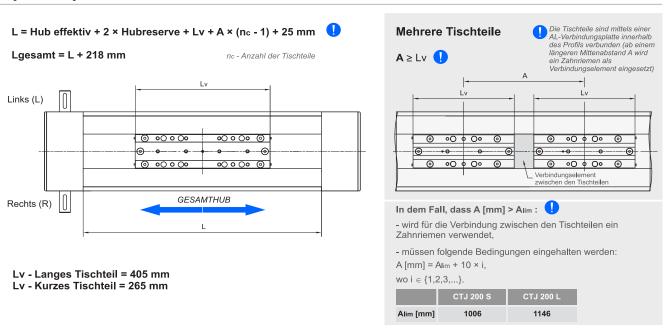
| Linear-<br>einheit | Gewicht der Lineareinheit                                   | Massenträgheitsmoment                                         | Flächenträgheits-<br>moment |                        |  |
|--------------------|-------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|------------------------|--|
|                    | [ kg ]                                                      | [ 10 <sup>-5</sup> kg m <sup>2</sup> ]                        | ly [ cm <sup>4</sup> ]      | lz [ cm <sup>4</sup> ] |  |
| CTJ 200 S          | 20,2 + 0,0245 × (Gesamthub + (nc - 1) × A) + 3,1 × (nc - 1) | 778 + 0,1868 × (Gesamthub + (nc - 1) × A) + 482,9 × (nc - 1)  | 376.4                       | 2744,6                 |  |
| CTJ 200 L          | 26,2 + 0,0245 × (Gesamthub + (nc - 1) × A) + 5,7 × (nc - 1) | 1210 + 0,1868 × (Gesamthub + (nc - 1) × A) + 902,4 × (nc - 1) | 370,4                       | 2744,0                 |  |

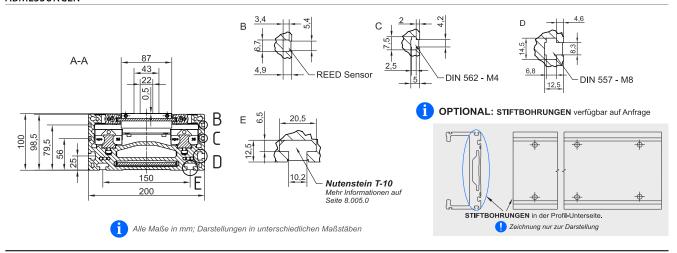

<sup>\*</sup>Gesamthub [mm]


A - Mittenabstand zwischen den Tischteilen [mm]. Mehr Infos auf den folgenden Seiten. nc - Anzahl der Tischteile

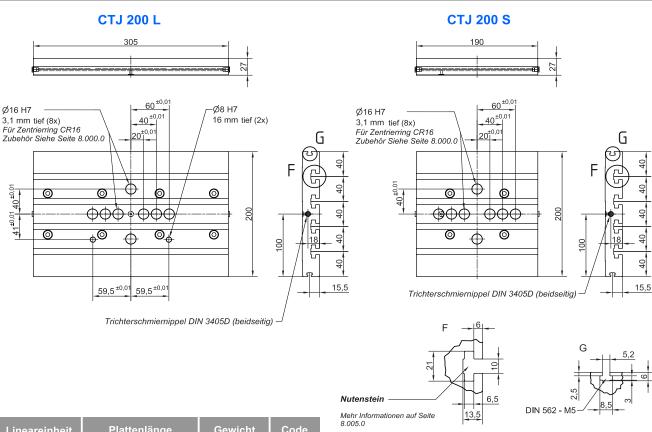




Gewichtsberechnung ohne Motor, Getriebe, Spannstück und Schalteranbau


### Durchbiegung der mechanischen Lineareinheit












# VERBINDUNGSPLATTE



| Lineareinheit | Plattenlänge<br>[ mm ] | Gewicht<br>[ kg ] | Code   |
|---------------|------------------------|-------------------|--------|
| CTJ 200 S     | 190                    | 2,3               | 103667 |
| CTJ 200 L     | 305                    | 3,7               | 103666 |



Bitte beachten Sie unseren Hinweis in der Wartungs- und Montageanleitung

# Montage des Antriebs



